Horseshoes and Lyapunov exponents for Banach cocycles over non-uniformly hyperbolic systems

نویسندگان

چکیده

Abstract We extend Katok’s result on ‘the approximation of hyperbolic measures by horseshoes’ to Banach cocycles. More precisely, let f be a $C^r(r>1)$ diffeomorphism compact Riemannian manifold M , preserving an ergodic measure $\mu $ with positive entropy, and $\mathcal {A}$ Hölder continuous cocycle bounded linear operators acting space $\mathfrak {X}$ . prove that there is sequence horseshoes for dominated splittings the horseshoes, such not only theoretic entropy but also Lyapunov exponents respect can approximated topological respectively. As application, we show continuity sub-additive pressure

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost periodic Szego cocycles with uniformly positive Lyapunov exponents

We exhibit examples of almost periodic Verblunsky coefficients for which Herman’s subharmonicity argument applies and yields that the associated Lyapunov exponents are uniformly bounded away from zero. As an immediate consequence of this result, we obtain examples of almost periodic Verblunsky coefficients for which the associated probability measure on the unit circle is pure point.

متن کامل

Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes

In this paper we consider horseshoes containing an orbit of homoclinic tangency accumulated by periodic points. We prove a version of the Invariant Manifolds Theorem, construct finite Markov partitions and use them to prove the existence and uniqueness of equilibrium states associated to Hölder continuous potentials.

متن کامل

Some Non-hyperbolic Systems with Strictly Non-zero Lyapunov Exponents for All Invariant Measures: Horseshoes with Internal Tangencies

We study the hyperbolicity of a class of horseshoes exhibiting an internal tangency, i.e. a point of homoclinic tangency accumulated by periodic points. In particular these systems are strictly not uniformly hyperbolic. However we show that all the Lyapunov exponents of all invariant measures are uniformly bounded away from 0. This is the first known example of this kind.

متن کامل

Lyapunov Exponents For Some Quasi-Periodic Cocycles

We consider SL(2,R)-valued cocycles over rotations of the circle and prove that they are likely to have Lyapunov exponents ≈ ± logλ if the norms of all of the matrices are ≈ λ. This is proved for λ sufficiently large. The ubiquity of elliptic behavior is also observed. Consider an area preserving diffeomorphism f of a compact surface. Assume that f is not uniformly hyperbolic, but that it has o...

متن کامل

On Lyapunov Exponents of Continuous Schrödinger Cocycles over Irrational Rotations

In this note, we consider continuous, SL(2,R)-valued, Schrödinger cocycles over irrational rotations. We prove two generic results on the Lyapunov exponents which improve the corresponding ones contained in [3].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2023

ISSN: ['0143-3857', '1469-4417']

DOI: https://doi.org/10.1017/etds.2023.9